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Abstract—Modern information and communication
technologies provide digital traces of human interactive
activities, which offer novel avenues to map and analyze
temporal features of human interaction networks. This paper
explores mesoscopic patterns of human interactive activities from
six real-world interaction networks with temporal-topological
isomorphic subgraphs, i.e., temporal motifs. We discover two
dominant mutual motifs, “Star,” “Ordered-chain,” and one
dominant directed motif, “Ping-Pong,” which characterize the
interactive patterns of “Leader,” “Queue,” and “Feedback,”
respectively. Moreover, temporal dynamics shows that bursts
are universal in human mesoscopic patterns, and the evolution
of three dominant temporal motifs indicates the existence of
characteristic time. Finally, we analyze temporal robustness
and generalization to verify that 3-event temporal motifs are a
simple yet powerful tool to capture the mesoscopic patterns of
human interactive activities.

Index Terms—Data-driven, human dynamics, interaction
pattern, motifs, temporal networks.

I. INTRODUCTION

UNDERSTANDING human interaction activities is
essential in various implications [1]–[7], ranging from

managing information spreading to tracking social conta-
gion, evaluating individual/group performance and identifying
social relationships. Today, human interactive activities
are overwhelmingly digitized by a variety of mod-
ern information and communication technologies (e.g.,
Wi-Fi technology [8], [9], active radio frequency identifica-
tion (RFID) technology [10], [11], internet [12], and mobile
phones [13]), which record rich data to track human interac-
tive activities and offer unparalleled opportunities to explore
human interaction patterns beyond laboratories.

Recently, human interactive activities (e.g., online com-
munications and face-to-face interactions) have witnessed
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non-Poissonian temporal bursts [13], [14], while temporal
transitivity as well as reachability among interactive activi-
ties significantly influence social contagion and immunization
strategies [15], [16]. Therefore, in temporal networks, the
information of temporal dimension presents as an explicit
element to characterize both topological and temporal dynam-
ics of human interaction networks [8], [9], [12], [15], [17],
and many statistical and topological measurements are
extended [15], [18]–[22], e.g., path lengths, connectivity,
degree centrality, and more close to the interests of this paper,
temporal motifs.

Temporal motifs are extended from the concept of network
motifs, which are defined as the isomorphic classes of sub-
graphs, and have been widely applied to capture mesoscopic
structures of biological networks and specific dynamical
functions [23]–[27]. For example, 3-node motif “feedforward
loop” in the transcription network (Escherichia coli) per-
forms the biological function of repressing sugar utilization
systems in response to glucose, and shifting to anaerobic
metabolism [23], [24]. By now, there exist two definitions
of temporal motifs [28]–[31]. The direct definition is the
equivalent classes of subgraphs in the weighted static net-
works after aggregating the edges of temporal networks over
a period [28]–[30], which, however, fails to depict the time
order of edges in the meso-scale. Here we apply the defi-
nition of temporal motifs based on temporal adjacency [31],
which captures time sequences of edges, and enables quantita-
tive analysis of temporal structures to infer human interaction
patterns.

In this paper, we explore the mesoscopic patterns of human
interactive activities with six datasets and find three domi-
nant 3-event temporal motifs: “Star,” “Ordered-chain,” and
“Ping-Pong,” with the corresponding three interaction patterns:
“Leader,” “Queue,” and “Feedback,” respectively. The tem-
poral dynamics of three dominant temporal motifs presents
non-Poissonian statistics of bursts, which is universal in meso-
scopic interactive patterns. The evolution of three dominant
temporal motifs shows that there exists a characteristic time
determined by the context of human activities. Finally, the
temporal robustness of 3-event temporal motifs and the gener-
alization to 2-event and 4-event temporal motifs verify that
3-event temporal motifs are a simple yet powerful tool to
explore mesoscopic patterns of human interactive activities.

This paper is organized as follows. In Section II, we describe
six datasets of human interactive activities, and introduce the
definitions of temporal networks and motifs. In Section III,
we find three dominant temporal motifs, and infer the corre-
sponding interactive patterns. In Section IV, we present the
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TABLE I
STATISTICS OF SIX EMPIRICAL DATASETS

non-Poissonian statistics of three dominant temporal motifs,
and analyze their evolution to uncover the characteristic time
of each dominant interactive pattern. Section V focuses on
temporal robustness and generalization of 3-event temporal
motifs. Finally, we conclude this paper in Section VI.

II. DATASETS AND DEFINITIONS

A. Dataset Description

We use six empirical datasets of human interactive activities,
which are introduced as below and summarized in Table I.

1) The dataset of “FudanWiFi09” was recorded by the
Wi-Fi system in Fudan University in 2009–2010 fall
semester (from October 18, 2009 to January 9, 2010).
When members of the university (students, teachers,
office staffs, and visiting scholars) use their unique
accounts to access to the campus Wi-Fi system, the
accessing information, e.g., the MAC addresses of
their devices and the Wi-Fi access points (APs) being
accessed, as well as the accessing on/offline timestamps,
are automatically recorded by the campus Wi-Fi system
(the details of our data see Appendix). Since each Wi-Fi
AP is deployed inside a campus building and covers
a small indoor region, we assume that all members
accessing to the same Wi-Fi AP at the same time
represents spatial proximity indoors, which is similar
to the assumption in [32].

2) The dataset of “Sex6yr” was collected from an inter-
net online forum in Brazil from September 2002
to October 2008, which records the sexual trading
activities among the sellers and buyers. This dataset is
available in [12], and for more details refer to [17].

3) The datasets of “HT09” and “SGinfectious” were
from the SocioPatterns Program, with active RFID
tags embedded in badges. The exchange of radio
packets between badges within 1–2 m can be
recorded by one of the closest readers, which
detects face-to-face conversations between individuals.
The dataset of HT09 was collected in the ACM
Hypertext 2009 conference, hosted by the Institute for
Scientific Interchange Foundation in Turin, Italy, from
June 29 to July 1, 2009. The dataset of SGInfectious
was collected during the art-science exhibition
“INFECTIOUS: STAY AWAY” at the Science Gallery
of Dublin, Ireland, from April 17 to July 17, 2009. Both
datasets are available on the website of SocioPatterns
(http://www.sociopatterns.org/datasets). For more
details on the two datasets refer to [10] and [11].

(a)

(b)

(c)

Fig. 1. (a) Mutual (left) or directed (right) interactive trajectories represent
human mutual or directed interaction events, respectively. The bold lines per-
tain to the interactive duration or the time of events. The intervals between the
end of one interaction event to the beginning of the consecutive one sharing the
same persons are indicated by �τ . (b) Temporal network G = (V, E) gives a
reduced picture of interactive trajectories, where the vertices in V are individ-
uals, and the edges in E = e illustrate the interactive events e = (v1, v2, t, δ),
which consists of two individuals v1, v2, the beginning time of event t and
its duration δ. When (v1, v2, t, δ) = (v2, v1, t, δ), the edges of temporal net-
work are mutual (left), otherwise, the edges of temporal network are directed
(right). (c) Mutual (left) or directed (right) temporal motifs with a given size
of events (i.e., “1-event,” “2-event,” and “3-event”), where the numbers stand
for the temporal order of the events.

4) The datasets of “SMS1” and “SMS2” were both
from the charging accountant bills provided by two
Chinese mobile operators. Each record comprises a
sender mobile phone number, a recipient mobile phone
number, and the timestamp with a precision of 1 s for
their short-message communication [13].

B. Definitions

The six datasets cover two categories of interactive events:
mutual interactive events and directed interactive events.
Mutual interactive events are illustrated by the mutual inter-
active trajectories as shown in the left part of Fig. 1(a), where
the bold lines pertain to the interactive duration δ. The interval
between two consecutive mutual interactive events (sharing the
same individuals) is the duration from the end of the former

http://www.sociopatterns.org/datasets
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event to the beginning of the latter one (indicated by �τ ).
The mutual interactive trajectories can be mapped into a tem-
poral mutual network G = (V, E) as shown in the left part
of Fig. 1(b), where vertices represent individuals, and edges
between two individuals represent a set of events E = {e}.
Each event e = (v1, v2, t, δ) consists of two individuals v1, v2,
the beginning time t of the interaction and its duration δ. In
a temporal mutual network, the order of individuals in an
event is insignificant, i.e., (v1, v2, t, δ) = (v2, v1, t, δ), and two
individuals interact with each other simultaneously. As sum-
marized in Table I, the events in the datasets of FudanWiFi09,
Sex6yr, HT09, and SGinfectious interact mutually, which gen-
erate temporal mutual networks. Directed interactive events are
described by the directed interactive trajectories as shown in
the right part of Fig. 1(a). The difference between mutual and
directed interactive events is that the order of two vertices in
the latter events determines the direction of interaction. The
events in the datasets of SMS1 and SMS2 generate temporal
directed networks. Generally, a temporal mutual/directed net-
work can be aggregated into a static mutual undirected/directed
network, where the temporal information of interaction events
is ignored, and only the connections (including directions)
between vertices are retained as the edges of static networks.

The two categories of temporal networks above include two
categories of temporal motifs, i.e., mutual temporal motifs and
directed temporal motifs. We extend the definition of temporal
motifs in [31] to both mutual and directed temporal motifs as
follows.

1) Two mutual (or directed) interactive events are defined
as �t − adjacent, if they share at least one individual,
and the interval between them is less than a given time
window �t. As shown in the left part of Fig. 1(b),
two events e2, e3 share the same individual B. When
their interval �τ = t5 − (t3 + δ2) satisfies �τ ≤ �t,
they are �t − adjacent. Similarly, in the right part of
Fig. 1(b), two events e0, e1 are also �t − adjacent if
�τ = t1 − t0 ≤ �t.

2) Two mutual (or directed) interactive events are
defined as �t − connected, if there is a sequence
of �t − adjacent events between them. For example,
in the left part of Fig. 1(b), two events e1 and e4
are connected by a sequence of events e1, e2, e3, e4.
When e1e2, e2e3, e3e4 all satisfy �t − adjacent, e1, e4
are defined as �t − connected. Similarly, in the right
part of Fig. 1(b), two events e0, e6 are defined as
�t − connected, if e0e1, e1e2, e2e3, e3e4, e4e5, e5e6 all
satisfy �t − adjacent.

3) A subgraph generated from a set of mutual (or directed)
interactive events E, in which every pair of events are
�t−connected, is defined as a �t−connected temporal
subgraph. For example, the temporal mutual network in
the left part of Fig. 1(b) is �t − connected if the time
window satisfies �t ≥ �τmax = max(ti+1 − ti)|i=1,4,6.
Similarly, the temporal directed network as shown in
the right part of Fig. 1(b) is �t − connected if the time
window satisfies �t ≥ �τmax = max(ti+1 − ti)|i=0∼5.

4) The maximal connected subgraph, which a given mutual
(or directed) interactive event e belongs to, is defined as

the maximal �t − connected subgraph containing event
e while unable to accommodate any additional event.
For example, the maximal connected subgraph that the
event e1 belongs to is the whole temporal network as
shown in the left part of Fig. 1(b).

5) A temporal motif is such a maximal connected
subgraph, where all �t − connected events of each
individual are consecutive.

As shown in Fig. 1(c), we list all 1-event and 2-event
temporal motifs and three 3-event temporal motifs for both
mutual and directed cases, which are named as Star, Ordered-
chain for two mutual motifs, and Ping-Pong, Star for two
directed motifs, respectively. The details of the tempo-
ral motif detection method and its theoretical justification
refer to [31].

III. TEMPORAL MOTIFS AND HUMAN

INTERACTIVE PATTERNS

According to the definition of temporal motif, time win-
dow �t is critical to the definition and detection of temporal
motifs in temporal networks. As illustrated in Fig. 2, with
increasing time window �t, all 3-event mutual temporal motifs
and the top five directed temporal motifs gradually reach their
invariant density. We clearly observe that in the datasets of
FudanWiFi09, sex6yr, HT09 and SGinfectious, mutual motifs
Star, and Ordered-chain [labeled as 1, 2 in Fig. 2(e)] are
prominent than others, and in the datasets of SMS1 and SMS2,
directed motif Ping-Pong [labeled as 1 in Fig. 2(h)] prevails in
the networks. In this section, we explore such three dominant
motifs and uncover the interactive patterns of human activities:
Leader, Queue, and Feedback.

A. Leader Pattern of Human Interactive Activities

As shown in Fig. 2(e), motif Star describes such a tem-
poral structure that a center vertex connects the other three
vertices in the temporal order, indicating that the central indi-
vidual successively contacts his (her) neighbors. Note that such
a centralized structure has been widely discovered [33]–[36],
but not in a temporal version yet. For instance, in a multiagent
networked system, the Leader agent commands the “follower”
agents to reach consensus [33], [34]. In gene networks, a reg-
ulator can generate a temporal expression programme with the
defined order of activation for each target promoter [35], as
observed in E. coli for example [36]. Therefore, motif Star
uncovers the Leader pattern of human interactive activities.

Fig. 2(a) and (b) tells that such a Leader pattern dominates
both the proximity indoor interactions of Chinese students,
and the potential sexual contacts in Brazil. Since the dataset
of sexual contacts provides gender information of individuals,
we further analyze 3-event mutual temporal motifs when iden-
tifying the gender of buyers/sellers (vertices) in the network.
Fig. 2(b1) and (b2) not only verify that the Leader pattern is
dominant, but also present that the female sex sellers play the
leader role, indicating female sex sellers are more active (and
important) than male sex buyers in such interactive activities.

To illustrate the significance of temporal information
in characterizing human interactive activities, we calculate
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Fig. 2. Temporal motif density evolution. (a)–(d) Density evolution of 3-event mutual temporal motifs versus time window �t in the datasets of FudanWiFi09,
Sex6yr, HT09, and SGinfectious. (e) Temporal structures of 3-event mutual temporal motifs shown in (a)–(d), where the dominant motifs are Star (labeled
as “1”) and Ordered-chain (labeled as “2”). (f) and (g) Density evolution of top five 3-event directed temporal motifs versus time window �t in the datasets
of SMS1 and SMS2. (h) Temporal structures of 3-event directed temporal motifs shown in (f) and (g), where the dominant motif is Ping-Pong (labeled as 1).
(b1) Density evolution of 3-event mutual temporal motifs versus time window �t in the dataset of Sex6yr with gender identity. (b2) Temporal structures of
3-event mutual temporal motifs with gender identity plotted in (b1), where hollow circles represent female sex sellers, and solid circles represent male sex buyers.

the motif densities (using “FANMOD” [37], [38]) in the
corresponding static networks where we neglect the temporal
information. As collected in Fig. 3(a), for example, the chain
static motif prevails over the Star static motif, indicating the
observed Leader interactive pattern in the temporal version
may be underestimated with only static contact information.
Such difference mainly comes from the fact that after remov-
ing temporal information, the chain static motif represents the
three chain temporal motifs [labeled as 2, 3, and 4 in Fig. 2(e)],
whose density is therefore cumulated and dominant over that
of Star motif.

B. Queue Pattern of Human Interactive Activities

There exists another dominant temporal motif, i.e.,
Ordered-chain motif, as shown in Fig. 2(c) and (d) in human

interactive activities. Ordered-chain motif describes such a
temporal interactive structure that a sequence of vertices con-
secutively connects one another in the temporal order, which
prevails in the temporal networks generated from the datasets
of HT09 and SGinfectious. Since both the datasets were
recorded in such a rendezvous that a visitor/attendee may
have face-to-face communication with one another, Ordered-
chain motif depicts the Queue pattern of the social population’s
interactive activities. Note that in Fig. 2(c) and (d), both two
dominant motifs of Star and Ordered-chain present minor den-
sity difference in four different datasets, which were collected
as direct (HT09, SGinfectious) or indirect (FudanWiFi09 and
Sex6yr) proxy of human interactive activities in different ren-
dezvous with different data-collection technologies. Therefore,
the dominance of Star and Ordered-chain motifs tells that both
the Leader and Queue patterns characterize the centralized
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Fig. 3. Static motif density. (a) Densities of 4-node static motifs in the aggre-
gated static network from the dataset of FudanWiFi09, and the inset shows the
densities of 3-node static motifs from the same dataset. (b) Densities of 4-node
static motifs with gender identity from the dataset of Sex6yr, where hollow cir-
cles represent females, and solid circles represent males, and the inset shows
the densities of 3-node static motifs from the same dataset. (c) Densities of
4-size static motifs from the datasets of HT09 (black square) and SGinfectious
(red circle), and the inset shows the densities of 3-node static motifs from
HT09 (black bar) and SGinfectious (red bar). (d) Densities of 4-node static
motifs from the datasets of SMS1 (black bar) and SMS2 (red bar), and the
inset shows the densities of 3-node static motifs from the same datasets.

and decentralized interactive activities of a social population,
respectively.

C. Feedback Pattern of Human Interactive Activities

In the case of directed interactive activities, where direction
is not negligible, the outcome of dominant motifs presents
new features. As shown in Fig. 2(f) and (g), both the
datasets of SMS1 and SMS2 do not show similar patterns
like before, while the so-called Ping-Pong motif prevails in
the temporal networks. Ping-Pong motif is such a tempo-
ral structure that a pair of vertices consecutively repeat the
directional events between each other, like the name of motif
indicates. The dominance of Ping-Pong motif indicates the
most frequent interactive activity in short-message commu-
nications is requesting-reply behaviors between two mobile
phones’ owners, which is named as Feedback pattern, and
the loop of feedback in temporal order features such typical
interactions.

As the comparison with the static motifs as shown in
Fig. 3(d), the temporal loops disappear, while the directed
Star static motif only tells that short-message broadcasting is
popular in both the datasets of SMS1 and SMS2. Therefore,
the significance of temporal motifs of Star, Ordered-chain,
and Ping-Pong serves as a powerful indicator to uncover
the Leader, Queue, and Feedback patterns featured in the
interactive activities of human beings.

Fig. 4. Non-Poissonian statistics of bursts in the dominant 3-event tem-
poral motifs. (a)–(f) Cumulative probability distributions of the intervals �τ

in the dominant temporal motif from the datasets of FudanWiFi09 (whose
dominant motif is Star), Sex6yr (Star), HT09 (Ordered-chain), SGinfectious
(Ordered-chain), SMS1 (Ping-Pong), and SMS2 (Ping-Pong). The red lines
represent the fitted values based on power-laws with exponential cutoffs, and
the details are summarized in Table II.

IV. TEMPORAL DYNAMICS OF THREE DOMINANT

INTERACTIVE PATTERNS

A. Emergence of Bursts in Three Dominant
Interactive Patterns

The definition of temporal motif shows that the interval �τ

between two consecutive events in a temporal motif is less
than a given time window �t. We assume the number of a
temporal motif during time window �t is N(ε < �τ ≤ �t),
where ε represents the temporal resolution of the dataset. The
calculation of N is as follows: when the time window is long
enough (�t = �t∞ > max(�τ)), there is no artificial cutoff
on temporal adjacency, i.e., any two consecutive interactive
events sharing the same person are temporal adjacent, thus
the number of the temporal motif is N(ε < �τ ≤ �t∞).
Therefore, the (log-bin) cumulative probability distribution of
the interval �τ is

P (�τ > �t) = 1−P (�τ ≤ �t)=1 − N (ε < �τ ≤ �t)

N (ε < �τ ≤ �t∞)
.

(1)

The red lines in Fig. 4 represent the fitted values
based on the model of power-law with exponential cutoff
f (x)= αx−β exp (−x/γ ); main parameters are summarized in
Table II (all p-value < 0.01). We further give LR tests [39]
between the model of power law with exponential cutoff and
the exponential model. As shown in Table II, all LRs are
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TABLE II
LIKELIHOOD RATIO (LR) TESTS. THE MODEL OF POWER LAW WITH

EXPONENTIAL CUTOFF IS f (x) = αx−β exp (−x/γ ). THE LR TESTS

COMPARE THE MODEL OF POWER LAW WITH EXPONENTIAL

CUTOFF AND THE EXPONENTIAL MODEL

g(x) = α exp (−x/γ )

larger than zero (LR > 0 and all p-values < 0.01), indicating
that the model of power law with exponential cutoff is bet-
ter for fitting the cumulative probability distribution of the
intervals compared with the exponential model. Therefore, the
intervals in the dominant 3-event temporal motif Star, Ordered-
chain, and Ping-Pong all follow the non-Poissonian statistics
of heavy-tail distributions, indicating the bursts of rapid inter-
action events separated by long-time inactivities are popular
in human mesoscopic interactive patterns.

B. Evolution of Three Dominant Patterns

We have observed that the three dominant 3-event temporal
motifs, Star, Ordered-chain, and Ping-Pong correspond to the
human interactive patterns of Leader, Queue, and Feedback,
respectively. Note that the density evolution of the dominant
3-event temporal motifs is calculated from their cumulative
numbers, which may not fully capture the leading pattern
of human interaction activities. Therefore, we analyze the
difference between the numbers of additional dominant and
subdominant temporal motifs in each dataset with increasing
time windows, and visualize the evolution of the dominant
human interactive patterns.

When the time window grows from �ti−1 to �ti, we assume
that the number of additional dominant temporal motifs is
�ND(�t|�t ∈ (�ti−1,�ti]) = ND(ε < �τ ≤ �ti) − ND(ε <

�τ ≤ �ti−1), and the number of additional subdominant
temporal motifs is �NS(�t). The dominant and subdom-
inant temporal motifs in the six datasets are summarized
in Table III. The time-varying normalized difference η(�t)
between the dominant and subdominant temporal motifs is
defined as follows:

η(�t) = �ND (�t) − �NS (�t)
1
n

∑n
j=1

∥
∥�ND

(
�tj

) − �NS
(
�tj

)∥
∥

(2)

where n is the number of sampling time windows. Therefore,
we define the characteristic time of the dominant temporal
motif as

λ =
∑

�t∈T �t · η(�t)
∑

�t∈T η(�t)
,
{
T |�t ∈ T , η(�t) > 0

}
. (3)

Fig. 5(a) shows that, when η > 0, T = (60 s, 2939 s].
In other words, when the intervals between two consecutive
events are less than 50 min, the number of additional dominant

temporal motif Star is larger than that of the other temporal
motifs. This tells that the students attending a class (45 min) in
the same classroom interact more frequently with those Leader
student. Fig. 5(b) shows that when η > 0, T = (1 day, 7 days],
i.e., intervals between two consecutive potential sexual con-
tacts of an active female sex seller are less than one week.
Besides, Fig. 5(c) shows that there are two epoches T for
η > 0, where the former epoch is calculated from over 60%
of data, thus we only list this epoch in Table III. Table III
tells that the characteristic time of each dominant interactive
pattern, e.g., Leader, Queue, and Feedback, is independent
on races, countries, and culture backgrounds of populations,
but only dependent on the context of activities. For instance,
Leader pattern prevails in the proximity indoor interactions
and the potential sexual contacts, but their characteristic time
is different. Moreover, Queue pattern dominates face-to-face
conversations with the characteristic time around 20 min, while
conversations occur among persons with different backgrounds
and collected from different countries. Similarly, Feedback
pattern prevailing in both datasets of short-message commu-
nications presents the characteristic time of 3 min, i.e., people
are used to replying the requesting messages in minutes.

V. ROBUSTNESS AND GENERALIZATION

A. Robustness Analyses of 3-Event Temporal Motifs

In this paper, the definitions of temporal motifs based on
temporal adjacency request that any person can not interact
with multiple persons simultaneously, i.e., a vertex can not
interact with different vertices at the same time. Therefore,
we preprocess all the six datasets by randomly conserving
the interactive trajectories between two persons, in order to
analyze the influence of missing data on our results. Firstly,
when we randomly remove 90% of events in the datasets of
FudanWiFi09, Sex6yr, HT09, and SGinfectious, the densities
of all the temporal motifs are very close to the whole datasets
with the corresponding time window [Fig. 6(a)–(d)], i.e., the
densities of 3-event temporal motifs are robust to random
sampling in preprocessing. Moreover, since all the datasets
are the samples of human interactive activities during a finite
period, we test the densities of 3-event temporal motifs in
the (sub-)data collected from different periods. Fig. 6(a)–(d)
shows that all 3-event temporal motif densities collected from
different periods are identical to those of the origin datasets of
FudanWiFi09, Sex6yr, HT09, and SGinfectious, which shows
that the densities of 3-event temporal motifs are robust to the
artificial cutoffs on the periods of data collections.

B. Generalization of 3-Event Temporal Motifs

We further generalize the case of 3-event temporal motifs to
both the cases of 2-event temporal motifs and 4-event temporal
motifs. We first analyze 2-event temporal motifs. The tempo-
ral structures of the dominant 3-event temporal motifs, Star,
and Ordered-chain can be decomposed into the unique 2-event
temporal motif Short-chain [see the left part of Fig. 1(c)],
which characterizes two consecutive events sharing the same
person. Due to the simple temporal structure of 2-event tem-
poral motif, it is impracticable to distinguish the Leader and
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TABLE III
CHARACTERISTIC TIME OF HUMAN INTERACTIVE PATTERNS IN SIX DATASETS

minutes

minutes
minutes
minutes
minutes

days

Fig. 5. Evolution of the dominant 3-event temporal motifs. (a)–(f) Difference
η between the numbers of additional dominant and subdominant 3-event
temporal motifs versus time window �t from the datasets of FudanWiFi09,
Sex6yr, HT09, SGinfectious, SMS1, and SMS2, respectively. The dominant
and subdominant temporal motifs in the six datasets are summarized in
Table III.

TABLE IV
DOMINANT 4-EVENT TEMPORAL MOTIFS

Queue patterns. Next, we move to analyze 4-event temporal
motifs. As shown in Table IV, the datasets which have the
same dominant 3-event temporal motif also have the same
dominant 4-event temporal motif. Fig. 7 shows that the dom-
inant 4-event temporal motifs are linear combinations of the
dominant 3-event temporal motifs. For example, Big Star motif
is composed by two Star motifs, Long Ordered-chain motif is
composed by two Ordered-chain motifs, and Big Ping-Pong

Fig. 6. Temporal robustness. (a)–(d) Densities of 3-event mutual temporal
motifs detected from the origin datasets, 10% randomly sampled datasets,
and two random period sampled datasets of FudanWiFi09, Sex6yr, HT09, and
SGinfectious. The structures of 3-event mutual temporal motifs are shown in
Fig. 2.

Fig. 7. (a)–(c) Temporal structures and decompositions of the dominant
4-event temporal motifs, Big Star, Long Ordered-chain, and Big Ping-Pong.

motif is composed by two Ping-Pong motifs. Therefore, the
mesoscopic patterns of human interaction activities inferred
by dominant 4-event temporal motifs are the same as those
directly inferred by the dominant 3-event temporal motifs.
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VI. CONCLUSION

In this paper, we have explored 3-event temporal motifs,
whose edges consist of three temporal-adjacent interac-
tion events, in six empirical datasets, and discovered three
dominant 3-event temporal motifs, Star, Ordered-chain, and
Ping-Pong, with the corresponding interactive patterns of
Leader, Queue, and Feedback, respectively. With the compar-
ison of static motifs after removing temporal information, we
conclude that static motifs cannot fully characterize human
interactive patterns. Furthermore, temporal dynamics of dom-
inant temporal motifs present that non-Poissonian statistics
of bursts are universal in human mesoscopic interactive pat-
terns, whose characteristic time is dependent on the context
of human activities. Finally, we have analyzed the robustness
and generalization of 3-event temporal motifs to verify that
3-event temporal motifs are a simple yet powerful tool to help
explore human interactive patterns.

Network motif as a mesoscopic connectivity pattern has
been well recognized to successfully characterize functions
of categories of biological gene networks [25], [35], and
in recent years, new findings of social gene have uncov-
ered how social behaviors affect (and are affected by) gene
expression [40], [41]. Our efforts in this paper to uncover the
significance of temporal motifs, on one hand, could help moti-
vate the understanding of gene function from the viewpoint
of embedding temporal information; on the other hand, the
discovered mesoscopic temporal patterns of human interac-
tive activities indicate the dominant temporal motifs may help
detect/predict the emergent behavior features of a large-scale
social population. Note that we are also a part of the social
population at the same time, and the present understanding to
human population behaviors is still only a tip of the iceberg.
Creating a systematic view has a long way to go, and deserves
more effort in the future.

APPENDIX

OPEN DATASET OF FUDANWIFI09

The dataset of FudanWiFi09 is formed by four data
files, i.e., access logs, location data, interaction data, and
sampled interaction data (used in this paper). These data
files contain 18 715 Wi-Fi users’ access logs, mobility
trajectories and interactive records over 3 months (from
October 18, 2009 to January 9, 2010) at one campus of Fudan
University. All data files are saved as the csv or txt format,
and for more details refer to the description document. The
dataset can be obtained in the supplementary materials, or from
the website of FudanWiFi09 [42], or by contacting the corre-
sponding author. If you use the dataset, this paper should be
cited.
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