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ABSTRACT
Network-based data mining techniques such as graph mining,
(social) network analysis, link prediction and graph clustering
form an important foundation for data science applications
in computer science, computational social science, and the
life sciences. They help to detect patterns in large data sets
that capture dyadic relations between pairs of genes, species,
humans, or documents and they have improved our under-
standing of complex networks.

While the potential of analysing graph or network repre-
sentations of relational data is undisputed, we increasingly
have access to data on networks that contain more than just
dyadic relations. Consider, e.g., data on user click streams
in the Web, time-stamped social networks, gene regulatory
pathways, or time-stamped financial transactions. These are
examples for time-resolved or sequential data that not only
tell us who is related to whom but also when and in which
order relations occur. Recent works have exposed that the
timing and ordering of relations in such data can introduce
higher-order, non-dyadic dependencies that are not captured
by state-of-the-art graph representations [12, 16–18, 20, 26].
This oversimplification questions the validity of graph min-
ing techniques in time series data and poses a threat for
interdisciplinary applications of network analytics.

To address this challenge, researchers have developed ad-
vanced graph modelling and representation techniques based
on higher- and variable-order Markov models, which enable
us to model non-Markovian characteristics in time series
data on networks. Introducing this exciting research field,
the goal of this tutorial is to give an overview of cutting-edge
higher-order data analytics techniques. Key takeaways for
attendees will be (i) a solid understanding of higher-order
network modelling and representation learning techniques,
(ii) hands-on experience with state-of-the-art higher-order
network analytics and visualisation packages, and (iii) a clear
demonstration of the benefits of higher-order data analyt-
ics in real-world time series data on technical, social, and
ecological systems.

∗Corresponding author

1 TARGET AUDIENCE
The target audience of this tutorial are data scientists from
academia, industry and government, who face the challenge of
analysing time series data on complex networks. A number of
works have generalized graph mining, network analysis, and
graph summarisation techniques to the time dimension [1,
3, 6, 8, 9, 13, 21, 22]. While these works provide scalable
methods that can be applied to large data sets, they have in
common that they are based on a representation of temporal
network data as sequences of time-aggregated graph snapshots.
This makes them particularly suitable for low-frequency data,
i.e. data in which links have coarse-grained time stamps that
naturally lend themselves to a snapshot representation.

Going beyond the scope of such methods, this tutorial
specifically targets data scientists that need to analyze high-
resolution temporal network data, where links carry fine-
grained, possibly unique, time stamps. Such data pose a
fundamental challenge for state-of-the-art dynamic graph
mining algorithms. Current methods discard information on
the microscopic timing and ordering of links, which is, how-
ever, the foundation of so-called time-respecting paths [6], i.e.
it is needed to answer the question who can influence whom.
For a sequence of two links 𝐴 → 𝐵 and 𝐵 → 𝐶, a node 𝐴
can only influence 𝐶 via a (transitive) time-respecting path
via 𝐵 if 𝐴 → 𝐵 occurs before 𝐵 → 𝐶. Such a transitive path
from 𝐴 to 𝐶 does not exist if the ordering of links is reversed.
As shown by a number of recent works, the specific ordering
and timing of events in realistic temporal network data can
give rise to non-Markovian characteristics in the sequence of
links [12, 16–18, 20, 26]. This results in complex, non-dyadic
dependencies between nodes that are neglected by existing
graph mining and network analysis techniques.

Addressing this important issue in the analysis of temporal
network data, this tutorial addresses data science researchers
and practitioners who (i) wish to adopt a network perspective
to reveal higher-order dependencies between the elements
of complex systems, (ii) extract higher-order features for
machine learning tasks, or (iii) look for methods that go
beyond the dyadic perspective taken by existing dynamic
graph mining and social network analysis techniques.
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Takeaways. Big data practitioners will learn about (i) the
emerging challenges of modelling increasingly complex data
(as opposed to big data) as networks, and (ii) state-of-the-art
tools for analysing and visualising higher-order dependencies
in relational data that are typically studied from a network
perspective. Machine learning researchers will see how to
construct optimal graphical representations that best pre-
serve information on higher-order dependencies in the raw
data. Government urban planners and policymakers will gain
hands-on experience with visualisation and interactive explo-
ration tools that enable anomaly detection in time-evolving
traffic networks, as well as simulations of species invasion
through global shipping networks. Students new to the in-
terdisciplinary field of network science will learn through
intuitive examples how cutting-edge network analytics tech-
niques can be used to uncover rich information hidden in
time series data on complex systems.

Impact. By introducing higher-order network analytic meth-
ods, the tutorial broadens the choice of network-analytic
techniques towards methods that account for higher-order
dependencies in complex systems. The methods introduced
in this tutorial are of high relevance for a wide variety of at-
tendees at SIGKDD. Bridging the machine learning, network
science, graph theory, and interdisciplinary physics perspec-
tives on pattern recognition in relational data, our tutorial
fosters the interdisciplinary exchange between data mining
and network science researchers with different backgrounds.

Prerequisites. Attendees should have a basic understanding
of mathematical and statistical concepts equivalent to the
high-school level. A basic understanding of graph-theoretic
concepts is a plus; however, all theoretical methods and ab-
stractions will be introduced along the way and visually
illustrated in examples. For the hands-on python exercises,
attendees should have basic programming skills (python or
other scripting languages) at the level of an introductory
programming class. A short tutorial on essential concepts
needed in the hands-on sessions will be made available to
attendees before the tutorial. A pre-configured jupyter note-
book that simplifies the handling, analysis and visualisation
of static and dynamic network data will be made available
to attendees before the tutorial.
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3 TUTORS’ BIO AND EXPERTISE
Dr. Renaud Lambiotte is Associate Professor at the Mathe-
matical Institute of University of Oxford. He holds a Ph.D.
in physics from the Université libre de Bruxelles, and was
postdoc at ENS Lyon, Université de Liège, UCLouvain and
Imperial College London. He further held a professorship in
Mathematics at the University of Namur. His main research
interests are the modelling and analysis of processes taking
place on large networks, with a particular focus on social and
brain networks. He also acts as an academic editor for PLoS
One, European Physical Journal B and Advances in Complex
Systems and is review editor for Frontiers in Physics. More
info at http://xn.unamur.be/

Dr. Martin Rosvall is Associate Professor in Physics at Umeå
University, Sweden, and is also the head of the highly inter-
disciplinary Integrated Science Lab. After a Ph.D. in the-
oretical physics at the Niels Bohr Institute in Copenhagen
(2003–2006), he was Postdoc at University of Washington
in Seattle (2006–2008), and Assistant Professor in Physics
at Umeå University. He performs high-impact research in
network science and complex systems research, and is a
leading authority in network inference. He has pioneered
mapping flow pathways and develop novel algorithms and
tools that take advantage of today’s data explosion for reveal-
ing important organizational patterns in complex systems.
Martin is co-founder of the data analytics start-up Infobaleen.
Infobaleen provides custom-fit machine-learning tools that
empowers people by making complex data simple to use and
understand. More info at http://www.tp.umu.se/~rosvall/

http://xn.unamur.be/
http://www.tp.umu.se/~rosvall/
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Dr. Michael Schaub is a Marie-Sklodowska-Curie Fellow at
the Institute for Data, Systems, and Society at MIT and the
Department of Engineering Science, University of Oxford. He
obtained his PhD in applied mathematics and an MSc in
biomedical engineering from Imperial College London, and
his BSc in electrical engineering and information technology
from ETH Zurich. Prior to MIT, he was also associated with
the Université catholique de Louvain (Belgium), and the
University of Namur (Belgium). He is broadly interested in
interdisciplinary applications of applied mathematics in engi-
neering, social and biological systems. His research interests
include network theory, data science, and dynamical systems.
More info at https://michaelschaub.github.io/

Dr. Ingo Scholtes is a Lecturer at ETH Zürich. He has a
computer science and mathematics background and his re-
search addresses foundations of algorithmic and statistical
data analysis in complex networks. He is an active member
of the network science and data mining communities. His
works on higher-order network models were published in in-
terdisciplinary outlets like Physical Review Letters, Nature
Communications, and The European Physical Journal, as well
as at SIGKDD. Together with R. Lambiotte and M. Rosvall,
he founded a workshop series on higher-order models1 that
is co-located with the flagship network science conference
NetSci. He is an editor of EPJ Data Science. Through his
work at CERN’s Large Hadron Collider he has hands-on
experience in massive-scale data analysis. His applied data
science works were published in areas like software engineer-
ing, social science, and scientometrics. At ETH Zürich he
teaches a network analytics course that is part of the data
science curriculum. He has extensive experience in teaching
interdisciplinary audiences of Master and PhD students with
backgrounds in computer science, mathematics, physics, life
sciences, engineering, and social sciences. His lectures received
the highest possible score in official teaching evaluations at
ETH Zürich and Karlsruhe Institute of Technology. More
info at http://www.ingoscholtes.net

Dr. Jian Xu is a data scientist at Citadel. He has a Ph.D.
in computer science from University of Notre Dame, and
his research focuses on representing big sequential data as
networks, with interdisciplinary applications in social net-
works, financial markets, and biological networks. His work
on higher-order networks was published in Science Advances,
interdisciplinary applications in SIGKDD, and higher-order
network visualization software packages in IEEE PacificVis.
He also collaborated with the U.S. Army Research Lab on
anomaly detection using higher-order networks. Through his
work at Interdisciplinary Center for Network Science and Ap-
plications (iCeNSA) and Citadel’s data strategies group, he
has hands-on experience designing algorithms and developing
software for 100TB-scale data. He has experience in teaching
graduate-level machine learning course at University of Notre
Dame, and has the Advanced Teaching Scholars certificate.
More info at http://www.jianxu.net
1http://complexdata.businesscatalyst.com

4 TUTORIAL OUTLINE
We propose a six-hour hands-on tutorial that combines an in-
troduction of fundamental higher-order modelling techniques
with hands-on exercises in which participants apply these
techniques to real-world data sets. In the following, we give
a detailed outline of the material covered:

From Sequential Data to Networks (45 min)
In this introductory session, we provide examples of time-
stamped and sequential relational data that exhibit non-
Markovian characteristics that cannot be modelled from a
graph perspective. We motivate the need for higher-order
modelling techniques using real-world examples for wrong
statements derived from existing network analysis and (tem-
poral) graph mining techniques. We further provide concrete
examples for data on technological, social, biological, and eco-
nomic networks that necessitate higher-order data analytics
techniques.

Case studies: (i) travel itineraries of passengers in the
London Tube, (ii) dynamic social network of students at a
university campus, (iii) trajectories of container ships in a
worldwide logistics network, (iv) clickstreams of Web users
in the Wikipedia graph, (v) time-stamped citation networks
of scholarly articles.

Learning Optimal Higher-Order Representations (90 min)
A fundamental question in the modelling of higher-order
dependencies in time series data is what representation is
needed to analyse a given data set. In some data sets, a
(standard) graph representation may be sufficient while other
cases require higher-order representations. In this session, we
show how this question can be answered. We introduce rep-
resentation learning algorithms to (i) decide when standard
graph representations of time series data are justified, and (ii)
determine the optimal order of a higher-order representation
for data sets that cannot be modelled as graphs. The first 45
minutes of this session will be used to introduce foundations
of higher-order representation learning. We specifically intro-
duce the model selection algorithm introduced in [18]2 and
the order detection technique used in [26]3. The second half
of the session will be dedicated to hands-on applications using
the implementation of these methods in the software pack-
ages pathpy and BuildHON+. We show how these packages
can be used to learn optimal higher-order representations of
the time series data sets presented in Session 1.

Case studies: (i) travel itineraries of passengers in the
London Tube, (ii) dynamic social network of students at a
university campus, (iii) trajectories of container ships in a
worldwide logistics network, (iv) clickstreams of Web users
in the Wikipedia graph, (v) time-stamped citation networks
of scholarly articles.

2see high-level explanation at https://www.youtube.com/watch?v=
prenHeyUbB4
3see examples at http://www.HigherOrderNetwork.com/algorithm

https://michaelschaub.github.io/
http://www.netsci2018.com
http://www.ingoscholtes.net
http://www.jianxu.net
http://complexdata.businesscatalyst.com
http://www.pathpy.net
https://www.youtube.com/watch?v=prenHeyUbB4
https://www.youtube.com/watch?v=prenHeyUbB4
http://www.HigherOrderNetwork.com/algorithm
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Higher-Order Temporal Graph Clustering (60 min)
In this session we introduce the problem of community detec-
tion or graph clustering in time series data on networks. Exist-
ing works in this area have either focused on (i) stable topolog-
ical clusters in sequences of time slice graphs [4, 5, 10, 11, 24],
or (ii) temporal clusters of node and link activities [23]. Com-
plementing this view, we will show that cluster structures
can emerge in time series data on networks where neither the
network topology nor temporal activities exhibit clustering.
The reason for this phenomenon is a complex interplay be-
tween the network topology and temporal correlations that
affect path structures in temporal networks. This can lead
to temporal-topological clusters that strongly influence dy-
namical processes [12, 16, 20]. Building on the representation
learning algorithms presented in Session 2, we show how the
inferred higher-order models can be analysed using the cross-
platform community detection algorithm InfoMap, developed
by one of the tutors [14, 15]. For this, we first provide a brief
introduction to flow compression, the information-theoretic
foundation of InfoMap. We show how this powerful approach
to clustering can be generalised to higher-order models that
capture both temporal and topological characteristics of time
series data on networks [16]. We demonstrate this method in
a large data set on time-stamped citations between scholarly
articles. We show that the clusters inferred by this approach
better capture ground truth scientific communities than stan-
dard clustering algorithms.

Case study: higher-order clustering of academic journals
based on time-stamped citation relations between scholarly
articles.

Higher-Order Node Ranking (60 min)
In this session, we show how higher-order models can be used
to rank nodes based on time series data on networks. We
first show that a ranking of nodes based on standard graph
centralities such as eigenvector, betweenness, closeness, or
PageRank centrality fails to capture the ground truth impor-
tance of nodes in time series data. Following the approach
developed in [16, 19, 26], we demonstrate how these measures
can be generalised to higher-order models that capture non-
Markovian characteristics in time series data on networks.
We provide a hands-on demonstration of this novel class of
centrality measures in a realistic scenario that addresses the
ranking of Wikipedia articles based on user click streams. We
show that standard ranking algorithms like PageRank dis-
card non-dyadic, higher-order dependencies between articles
that are hidden in such sequential data. Using a data set on
time-stamped social networks, we further show that a gener-
alisation of path-based centrality measures to higher-order
models provides new perspectives for social network analysis
and computational social science.

Case studies: (i) ranking Wikipedia articles based on a
freely available dataset capturing user click streams, and (ii)
identifying central actors in a time-stamped social network.

Higher-Order Spectral Analysis of Time Series Data (60 min)
Extending our coverage of higher-order clustering and rank-
ing algorithms, in this session we introduce advanced spectral
techniques to analyse higher-order models of temporal net-
work data. We show how well-known data mining techniques
like Laplacian-based spectral partitioning or eigenvector-
based centrality measures can be generalised to higher-order
graph models. We introduce a statistical framework to model
dynamical processes in temporal graphs and show that this
framework provides interesting insights into the complex inter-
play between temporal and topological characteristics in time
series data on networks [20]. We show that such a modelling
approach helps us to (i) better understand flow processes in
transportation networks, and (ii) temporal-topological cluster
structures in time-stamped social networks.

Case studies: (i) time series data on passenger flows in a
large transportation network, (ii) spectral clustering of actors
in a time-stamped social network.

Visualising Higher-Order Models (45 min)
This session will introduce the analysis and visualisation of
higher-order dependencies using the platform HONVis [25].
While higher-order modelling techniques provide a more ac-
curate description of time series data by creating additional
nodes to encode higher-order dependencies, they also add
complexity for visualisation, exploration, and interpretation,
especially when the higher-order network is time-evolving,
exhibits high orders of dependency, or contains rich metadata
(e.g. geographical or temporal information). We will demon-
strate HONVis4, which features coordinated multiple views
that reveal higher-order network structures at three levels
of detail (i.e., global, regional, and individual levels), the
ability to simulate diffusion on higher-order networks, and
to perform anomaly detection in time-evolving higher-order
networks.

Case studies: (i) visualising the flow of invasive species
through global shipping; (ii) anomaly detection using higher-
order models of taxi itineraries in NYC.

5 PREVIOUS EDITIONS
This is the first tutorial of the form outlined above and we
have specially tailored it to the interest of SIGKDD attendees.
Some of the tutors have given lectures or hands-on tutorials
on particular aspects that will also be covered in this tutorial:

o In 2016, Ingo Scholtes gave an invited lecture on the
analysis of time series data on networks in the School
program of NetSci X 2016. This lecture (90 minutes)
is also part of his interdisciplinary course on network
analytics at ETH Zürich. Different from the material
covered in this tutorial, this lecture focuses on theoret-
ical aspects of higher-order models.

o Martin Rosvall, Ingo Scholtes, and Jian Xu have given
short (20 min) hands-on live demonstrations of the data

4see video demo at http://www.HigherOrderNetwork.com/
visualization/

http://www.mapequation.org/
http://www.HigherOrderNetwork.com/visualization/
http://www.HigherOrderNetwork.com/visualization/
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analytics packages InfoMap, pathpy, and HONVis at the
2017 International Conference on Network Science.

Through its unique interdisciplinary perspective, the col-
laboration of researchers from different institutions and sci-
entific communities that have studied higher-order models
from different angles, and the integration of fundamental and
applied aspects in the modelling of higher-order dependencies
in complex systems, our tutorial provides the – to the best
of our knowledge – most comprehensive coverage so far of
this important topic. We anticipate that it will raise the
interest of a large audience of researchers and practitioners
and that it will equip SIGKDD attendees with a new toolkit
of cutting-edge data science techniques.

6 COVERED REFERENCES
The tutorial will introduce and practically demonstrate data
science and machine learning techniques that have been de-
veloped in the following published works:

o D Edler, L Bohlin, M Rosvall: Mapping Higher-Order Net-
work Flows in Memory and Multilayer Networks with Infomap.
In Algorithms, 10(4), September 2017

o I Scholtes: When is a Network a Network? Multi-Order Graph-
ical Model Selection in Pathways and Temporal Networks. In
KDD’17 – Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, Halifax, Nova Scotia, Canada, August 2017

o J Xu, T L Wickramarathne, N V Chawla: Representing
higher-order dependencies in networks. In Science Advances,
May 2016

o I Scholtes, N Wider, A Garas: Higher-Order Aggregate Net-
works in the Analysis of Temporal Networks: Path structures
and centralities. In European Physical Journal B, 89:61,
March 2016

o I Scholtes, N Wider, R Pfitzner, A Garas, C Tessone, F
Schweitzer: Causality-driven slow-down and speed-up of dif-
fusion in non-Markovian temporal networks. In Nature Com-
munications, Vol. 5, Article 5024, September 24, 2014

o J Tao, J Xu, C Wang, N V Chawla. HoNVis: Visualizing and
exploring higher-order networks. In IEEE Pacific Visualiza-
tion Symposium (PacificVis), April 2017.

7 REQUIRED SOFTWARE AND
EQUIPMENT

We will bring a laptop and necessary adapters. We need a
projector to present slides as well as a power socket. For the
hands-on sessions, attendees should bring their laptop with
a recent version of Linux, Windows or Mac OS X. Attendees
should have access to a power socket. Before the tutorial, the
attendees should set up the following software environment:

o a python 3.x environment, ideally a recent Anaconda
distribution

o core python data science packages such as numpy, scipy,
matplotlib, numpy, and sklearn

o optional but recommended: jupyter notebook
o a python-friendly IDE, e.g. VS Code, pyCharm, or Rodeo
o higher-order data analytics packages: pathpy, BuildHON+,

InfoMap

The three higher-order data analytics packages listed above
have been developed by the tutors and they are available
free of charge under an Open Source license. Detailed setup
instructions and introductory tutorials will be adapted from
existing material5 and distributed to the attendees prior to
the tutorial. We provide a test python script that will allow
attendees to check whether the environment has been in-
stalled correctly. As an additional solution for attendees that
do not wish to set up the tools themselves, we will prepare
and distribute a docker image that contains all necessary
packages and data sets, and which exposes all necessary tools
via a jupyter notebook server.
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