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Data

• Ship movements
• Web clickstreams
• Phone call cascades
• … …

Network 
representation

• Global shipping 
network

• Web traffic network
• Social network
• … …

Network 
analysis

• Clustering
• Ranking
• Link prediction
• Anomaly detection
• … …

Representing higher-order dependencies in networks
and how it improves the result of a variety of tasks such as random walking, clustering, and ranking

Prerequisite: To ensure the correctness of network analysis meth-
ods, the network as the input has to be a precise representation of 
the underlying data.
 

Question: How to e�ectively represent data as networks, without 
losing crucial information about higher-order dependencies?
 

Our answer: We propose the Higher-order Network (HON) that 
can embed higher-orders of dependencies to represent data more 
accurately, can use variable orders for concise representation, and 
is directly compatible with the existing suite of network analysis 
methods.

Overview

What people usually do: Direct conversion, the sum of pairwise con-
nections in the raw data --> the edge weights in the network.
 

What is assumed: The Markov property (�rst-order dependency).
 

What does it mean: When movements are simulated on the net-
work, where the �ow moves next dependes only on its current node.
 

Example: In this �rst-order network weighted by shipping frequen-
cy, a ship at Singapore has similar probabilities of going to Los Ange-
les and Seattle, no matter where the ship came to Singapore from; 
but in fact ships from Tokyo are more likely to go to Seattle, and 
ships from Shanghai are more likely to go to Los Angeles.

Problem of �rst-order representation

What people want: A network representing the complex system.
 

In reality: The network is usually not directly available.
 

What people have: Recorded sequences of events, such as trajec-
tories of vehicles, retweets of messages, streams of web clicks, etc.
 

Example: Global shipping data, containing ship movements.

Representing data as network

What we do: Break down nodes into higher-order 
nodes that carry di�erent dependency relationships.
 

Example: In this higher-order network, by breaking 
down the node Singapore, the ship’s next step can 
depend on previous steps when following di�erent 
paths to Singapore, thus more accurately simulate 
movement patterns in data.

Compatibility: The data structure is consistent with 
the conventional network representation, allowing 
for a variety of network analysis methods and algo-
rithms to run on HON without modi�cation.

Proposed higher-order network (HON)

Improving the result of a variety of network analysis methods

Random walking
 

Experiment: See how well random walkers on di�erent network representations 
of the same global shipping data can simulate the true ship movements in the 
raw data.
 

Result: The accuracy of simulating one step on HON doubles that of the conven-
tional �rst-order network, and is higher by one magnitude when simulating 
three steps (algorithms based on random walking such as PageRank usually 
need to simulate multiple steps of movement).

Clustering
 

Experiment: Given the global ship movements which drives the di�usion of 
invasion species, compare the clustering of ports (ports tightly coupled by spe-
cies �ows) on di�erent network representations.
 

Result on first order network: (Fig. A) non-overlapping clusters are generated. 
Although Valetta and Malta Freeport are local and international ports respec-
tively, the clustering result does not distinguish the two.
 

Result on HON: (Fig. B) clusters may overlap, and international ports (such as 
Malta Freeport) are e�ectively identi�ed by belonging to multiple clusters and 
potentially su�ering from multiple sources of invasions. Fourty-four ports 
belong to �ve clusters, including New York, Shanghai, Gibraltar, and so on.
 

What does it mean: Species may be introduced from multiple previous ports a 
ship has stopped at; these indirect species introduction pathways are already 
captured by HON and factored in the clustering.

Ranking
 

Experiment: With a clickstream data set recording how users navigate 
through Web pages, compare Web PageRank scores by using HON in-
stead of �rst-order network representation.
 

Result: More than 90% of the pages show a decrease of PageRank 
scores, such as pages of news personnels; while a few pages gain consid-
erable PageRank scores, such as weather forecasts and obituaries.
 

Why such changes: A case study: (Fig. A) the �rst-order network repre-
sentation indicates that a user is likely to go back to the homepage after 
viewing or uploading snow photos. (Fig. B) the HON representation uses 
additional higher-order nodes and edges to represent a natural scenario 
that once a user views and uploads a photo, the user is likely to repeat 
this process to upload more photos and is less likely to go back to the 
home page.
 

What does it mean: HON can better “guide” random walkers to simulate 
more complex movements such as user’s non-Markovian web browsing 
behaviors, thus HON may be used to improve the ranking results of web 
ranking, citation ranking, keyphrase extraction, and more, without modi-
�cation of the PageRank algorithm.

Problem: Previous work using �xed order for networks will result in exponential growth of 
network size when higher orders are incorporated due to combinatorial explosion. 

Question: How to build a scalable representation for complex data with high orders of de-
pendencies, and how much more space is needed to represent higher-order dependencies? 
 

Our solution: Use variable orders of dependency, and add higher-orders nodes and edges to 
a �rst-order network only where necessary. 
 

Compact representation: HON has less nodes and half the number of edges compared with 
the �xed second-order network. Even when increasing the maximum order to �ve, HON still 
has less edges than the �xed second-order network, while all the useful dependencies up to 
the �fth order are incorporated in the network.

Speeding up analyses: Another important advantage of HON over a �xed-order network is 
that network analysis algorithms can run faster on HON, due to HON’s compact representa-
tion. In addition, HON is sparser than the �xed-order representation, and many network tool-
kits are optimized for sparse networks. Compared with the �xed second-order network, these 
tasks run almost two times faster on HON with a maximum order of two, and about the same 
speed on HON with a maximum order of �ve (which embeds more higher-order dependen-
cies and is more accurate). 

Scalability of HON

Hypergraph: Although its edges can connect to multiple nodes simulta-
neously, the nodes are unordered, thus cannot represent dependencies.
 

Fixed second order network: (Rosvall et al.) is e�ective but does not scale 
well. It is an overkill when �rst order is enough, and insu�cient when 
higher orders are needed. HON scales better by using variable orders.
 

Variable Order Markov: For a network representation, VOM generates 
unnecessary probabilities while failing to capture some necessary proba-
bilities, thus not guaranteeing a network representation.

Related works and why we need HONContributions at a glance

Full paper: DOI: 10.1126/sciadv.1600028 or scan QR code
Science Advances 2, e1600028 (2016)
Source code is available at https://github.com/xyjprc/hon
Collaborations and discussions are welcomed.
 

More information

Acknowledgements: This work is based on research supported by the University of Notre Dame 
O�ce of Research via Environmental Change Initiative (ECI) and the National Science Foundation (NSF) 
Awards EF-1427157, IIS-1447795 and BCS-1229450; the research was supported by the Army Research Labo-
ratory (ARL), and was accomplished under Cooperative Agreement Number W911NF-09-2-0053 [the ARL 
Network Science Collaborative Technology Alliance (NSCTA). We thank David Lodge, Yuxiao Dong and Reid 
Johnson for their valuable comments.

 

Accurate: HON is a more accurate network representation that is re�ec-
tive of the underlying real-world phenomena by embedding higher 
order dependencies.
 

Compact: Use higher orders only where necessary, scales well.
 

Compatible: HON is consistent with existing network representation by 
using simple nodes and edges only, so that existing network analysis 
tools can be applied on HON directly with no modi�cations.
 

Algorithms: Guarantee that HON can extract and represent arbitrary 
orders mixed  in the same data set.

Jian Xu (jxu5@nd.edu)      �anuka Wickramarathne (twickram@nd.edu)      Nitesh Chawla (nchawla@nd.edu, corresponding author)
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By assuming an order of two for the whole network, the accuracies
on the fixed second-order network increase considerably as in Fig. 2D,
because the network structure can help the random walker remember
its last two steps. Meanwhile, the accuracies on HON with a maxi-
mum order of two are comparable and slightly better than the fixed
second-order network, because HON can capture second-order de-
pendencies while avoiding the overfitting caused by splitting all
first-order nodes into second-order nodes. Increasing the maximum
order of HON can further improve the accuracy and lower the entro-
py rate; particularly, ship movements in bigger loops need more steps
of memory and can only be captured with higher orders, as reflected
in Table 1, where the probability of returning in three steps increases
from 7.3 to 16.4% when increasing the maximum order from two to
three in HON. By increasing the maximum order to five, HON can
capture all dependencies below or equal to the fifth order, and the
accuracy of simulating one step on HON doubles that of the
conventional first-order network.

Furthermore, when simulating multiple steps, the advantage of
using HON is even bigger. The reason is that in a first-order network,
a random walker “forgets” where it came from after each step and has
a higher chance of disobeying higher-order movement patterns. This
error is amplified quickly in a few steps—the accuracy of simulating
three steps on the first-order network is almost zero. On the contrary,
in HON, the higher-order nodes and edges can help the random walk-
er remember where it came from and provide the corresponding
probability distributions for the next step. As a consequence, the
simulation of three steps on HON is one magnitude more accurate
than on first-order network. This indicates that, when multiple steps
are simulated (which is usually seen in methods such as PageRank and
MapEquation that need multiple iterations), using HON (instead of
the conventional first-order network) can help random walkers
simulate movements more accurately; thus, the results of all random
walking–based network analysis methods will be more reliable.

Effects on clustering
One important family of network analysis methods is clustering, which
identifies groups of nodes that are tightly connected. A variety of cluster-
ing algorithms, such as MapEquation (38) and Walktrap (39), are based

on random walking, following the intuition that random walkers are
more likely to move within the same cluster rather than between different
clusters. Because using HON instead of a first-order network alters the
movement patterns of random walkers on the network, a compelling
question becomes: How does HON affect the clustering results?

Consider an important real-world application of clustering: identi-
fying regions wherein aquatic species invasions are likely to happen.
Because the global shipping network is the dominant global vector for
the unintentional translocation of non-native aquatic species (45)
[species get translocated either during ballast water uptake/discharge
or by accumulating on the surfaces of ships (11)], identifying clusters
of ports that are tightly coupled by frequent shipping can reveal ports
that are likely to introduce non-native species to each other. The lim-
itation of the existing approach (10) is that the clustering is based on a
first-order network that only accounts for direct species flows, whereas
in reality the species introduced to a port by a ship may also come
from multiple previous ports at which the ship has stopped because
of partial ballast water exchanges and hull fouling. These indirect spe-
cies introduction pathways driven by ship movements are already cap-
tured by HON and can influence the clustering result. As represented
by the HON example in Fig. 1C, following the most likely shipping
route, species are more likely to be introduced to Los Angeles from
Shanghai (via Singapore) rather than from Tokyo, so the clustering
(driven by random walking) on HON prefers grouping Los Angeles
with Shanghai rather than with Tokyo. In comparison, indirect species
introduction pathways are ignored when performing clustering on a
first-order network (Fig. 1B), thus underestimating the risk of invasions
via indirect shipping connections.

By clustering on HON, the overlap of different clusters is naturally
revealed, highlighting ports that may be invaded by species from
multiple regions. Because there can be multiple nodes representing
the same physical location in HON (for example, both Singapore|
Tokyo and Singapore|Shanghai represent Singapore) and the ship
movements through these nodes can be different, these higher-order
nodes can belong to different clusters, so that Singapore as an inter-
national port belongs to multiple clusters, as one would expect.

The clustering results (using MapEquation) on a first-order net-
work and HON are compared in Fig. 3. For example, let us consider

Table. 1. Comparing different network representations of the same global shipping data.

Network
representation

No. of
edges

No. of
nodes

Network
density

Probability of
returning after two

steps

Probability of
returning after three

steps

Entropy
rate (bits)

Clustering
time (min)

Ranking
time (s)

Conventional first-
order 31,028 2,675 4.3 × 10−3 10.7% 1.5% 3.44 4 1.3

Fixed second-
order 116,611 19,182 3.2 × 10−4 42.8% 8.0% 1.45 73 7.7

HON, maximum
order of two 64,914 17,235 2.2 × 10−4 41.7% 7.3% 1.46 45 4.8

HON, maximum
order of three 78,415 26,577 1.1 × 10−4 45.9% 16.4% 0.90 63 6.2

HON, maximum
order of four 83,480 30,631 8.9 × 10−5 48.9% 18.5% 0.68 67 7.0

HON, maximum
order of five 85,025 31,854 8.4 × 10−5 49.3% 19.2% 0.63 68 7.6
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Invasive species modeling & prediction: Species may be carried unintentionally by ships 
from port to port and cause invasions. Thus, ship movements connect ports in the world 
in an implicit species �ow network. By identifying higher-order dependencies in ship 
movements, namely where a ship is more likely to go next given its previous steps, ship 
movements and species �ow dynamics can be modeled more accurately.

Social interactions & information diffusion: More accurately representing �ow of infor-
mation on networks can give a more accurate representation of the complex social inter-
actions and the �ow of information, which can be of interest for telecom companies, 
social media and so on.

Healthcare: Representing and highlighting complex patterns in sequences of symptoms, 
and revealing their relationships with genes and patient features. 

Traffic data: Representing complex taxi movements and human trajectories and high-
lighting emerging movement patterns, which the government can leverage for urban 
planning, and merchants can use for customer behavior analysis and prediction. 

Anomaly detection: The ability to extract and represent higher-order navigation patterns 
can also be used to analyze web clickstreams and network access patterns, with potential 
applications from website optimization to intruder detection (based on anomalous 
access patterns) for security and defense.
 

Interdisciplinary applications


